Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 374
1.
J Hazard Mater ; 472: 134540, 2024 May 07.
Article En | MEDLINE | ID: mdl-38733787

Cyanide is a typical toxic reducing agent prevailing in wastewater with a well-defined chemical mechanism, whereas its exploitation as an electron donor by microorganisms is currently understudied. Given that conventional denitrification requires additional electron donors, the cyanide and nitrogen can be eliminated simultaneously if the reducing HCN/CN- and its complexes are used as inorganic electron donors. Hence, this paper proposes anaerobic cyanides oxidation for nitrite reduction, whereby the biological toxicity and activity of cyanides are modulated by bimetallics. Performance tests illustrated that low toxicity equivalents of iron-copper composite cyanides provided higher denitrification loads with the release of cyanide ions and electrons from the complex structure by the bimetal. Both isotopic labeling and Density Functional Theory (DFT) demonstrated that CN--N supplied electrons for nitrite reduction. The superposition of chemical processes reduces the biotoxicity and enhances the biological activity of cyanides in the CN-/Fe3+/Cu2+/NO2- coexistence system, including complex detoxification of CN- by Fe3+, CN- release by Cu2+ from [Fe(CN)6]3-, and NO release by nitrite substitution of -CN groups. Cyanide is the smallest structural unit of C/N-containing compounds and serves as a probe to extend the electron-donating principle of anaerobic cyanides oxidation to more electron-donor microbial utilization.

2.
Water Res ; 257: 121741, 2024 May 13.
Article En | MEDLINE | ID: mdl-38744061

Biological treatment is commonly used in coking wastewater (CWW) treatment. Prokaryotic microbial communities in CWW treatment have been comprehensively studied. However, viruses, as the critical microorganisms affecting microbial processes and thus engineering parameters, still remain poorly understood in CWW treatment context. Employing viromics sequencing, the composition and function of the viral community in CWW treatment were discovered, revealing novel viral communities and key auxiliary metabolic functions. Caudovirales appeared to be the predominant viral order in the oxic-hydrolytic-oxic (OHO) CWW treatment combination, showing relative abundances of 62.47 %, 56.64 % and 92.20 % in bioreactors O1, H and O2, respectively. At the family level, Myoviridae, Podoviridae and Siphoviridae mainly prevailed in bioreactors O1 and H while Phycodnaviridae dominated in O2. A total of 56.23-92.24% of novel viral contigs defied family-level characterization in this distinct CWW habitat. The virus-host prediction results revealed most viruses infecting the specific functional taxa Pseudomonas, Acidovorax and Thauera in the entire OHO combination, demonstrating the viruses affecting bacterial physiology and pollutants removal from CWW. Viral auxiliary metabolic genes (AMGs) were screened, revealing their involvement in the metabolism of contaminants and toxicity tolerance. In the bioreactor O1, AMGs were enriched in detoxification and phosphorus ingestion, where glutathione S-transferase (GSTs) and beta-ketoadipyl CoA thiolase (fadA) participated in biodegradation of polycyclic aromatic hydrocarbons and phenols, respectively. In the bioreactors H and O2, the AMGs focused on cell division and epicyte formation of the hosts, where GDPmannose 4,6-dehydratase (gmd) related to lipopolysaccharides biosynthesis was considered to play an important role in the growth of nitrifiers. The diversities of viruses and AMGs decreased along the CWW treatment process, pointing to a reinforced virus-host adaptive strategy in stressful operation environments. In this study, the symbiotic virus-bacteria interaction patterns were proposed with a theoretical basis for promoting CWW biological treatment efficiency. The findings filled the gaps in the virus-bacteria interactions at the full-scale CWW treatment and provided great value for understanding the mechanism of biological toxicity and sludge activity in industrial wastewater treatment.

3.
Phys Chem Chem Phys ; 2024 May 08.
Article En | MEDLINE | ID: mdl-38717797

The PNO molecule is an important species found in the interstellar medium, and its spectroscopic information is helpful for its detection. We present the first line list of PNO (X1Σ+) using robust first-principles methods. The analytical potential energy surface and the dipole moment surface were constructed based on 11 942 ab initio points. The variational nuclear motion calculation was implemented in TROVE to obtain the rovibrational energy levels, Einstein A coefficients and other parameters. The J-dependent Coriolis-decoupled Hamiltonian was adopted with k ≤ 15, and the l-type doubling was considered for the bending vibration of the linear molecule. The line list contained almost 5.87 billion transitions between 3.61 million levels with rotational excitation up to J = 200 and was used to generate the PNO spectrum below 3000 K in the wavenumber range from 0 to 6000 cm-1. The millimetre wave spectrum agrees well with available experimental benchmarks. The Fermi resonance effects in the PNO spectrum are universal and complex, resulting in significant intensity increment of the related weak transition. This line list may be helpful for the spectroscopic characterization and possible astronomical detection of PNO, especially in high-temperature environments.

4.
BMC Plant Biol ; 24(1): 333, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38664694

BACKGROUND: The circadian clock, also known as the circadian rhythm, is responsible for predicting daily and seasonal changes in the environment, and adjusting various physiological and developmental processes to the appropriate times during plant growth and development. The circadian clock controls the expression of the Lhcb gene, which encodes the chlorophyll a/b binding protein. However, the roles of the Lhcb gene in tea plant remain unclear. RESULTS: In this study, a total of 16 CsLhcb genes were identified based on the tea plant genome, which were distributed on 8 chromosomes of the tea plant. The promoter regions of CsLhcb genes have a variety of cis-acting elements including hormonal, abiotic stress responses and light response elements. The CsLhcb family genes are involved in the light response process in tea plant. The photosynthetic parameter of tea leaves showed rhythmic changes during the two photoperiod periods (48 h). Stomata are basically open during the day and closed at night. Real-time quantitative PCR results showed that most of the CsLhcb family genes were highly expressed during the day, but were less expressed at night. CONCLUSIONS: Results indicated that CsLhcb genes were involved in the circadian clock process of tea plant, it also provided potential references for further understanding of the function of CsLhcb gene family in tea plant.


Camellia sinensis , Circadian Rhythm , Photosynthesis , Photosynthesis/genetics , Camellia sinensis/genetics , Camellia sinensis/physiology , Circadian Rhythm/genetics , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Genes, Plant , Multigene Family , Chlorophyll Binding Proteins/genetics , Chlorophyll Binding Proteins/metabolism , Photoperiod
5.
Phys Chem Chem Phys ; 26(16): 12838-12843, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38623625

Hydroboron monoxide (HBO) is expected to occur in envelopes of the asymptotic giant branch (AGB), but a lack of spectroscopic data is hampering its possible detection. Using the state-of-the-art ab initio method, we present the first, comprehensive molecular line list for HBO which is suitable for temperatures up to T = 3000 K. This new line list covers the wavenumber range of 0-9000 cm-1 (wavelengths of λ ≥ 1.11 µm), and it contains almost 75 million transitions between 435 631 energy levels with rotational excitation up to J = 120. The new line list of HBO can facilitate its future molecular detection in the laboratory and interstellar space.

6.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1611-1620, 2024 Mar.
Article Zh | MEDLINE | ID: mdl-38621946

This study investigated the protective effect of tanshinone Ⅱ_A(TSⅡ_A) on the liver in the rat model of non-alcoholic fatty liver disease(NAFLD) and the mechanism of TSⅡ_A in regulating ferroptosis via the nuclear factor E2-related factor 2(Nrf2) signaling pathway. The rat model of NAFLD was established with a high-fat diet for 12 weeks. The successfully modeled rats were assigned into model group, low-and high-dose TSⅡ_A groups, and inhibitor group, and normal control group was set. Enzyme-linked immunosorbent assay was employed to determine the content of superoxide dismutase(SOD) and malondialdehyde(MDA) in the serum of rats in each group. A biochemical analyzer was used to measure the content of aspartate aminotransferase(AST), alaninl aminotransferase(ALT), total cholesterol(TC), and triglycerides(TG). Hematoxylin-eosin(HE) staining was used to detect pathological damage in liver tissue. Terminal-deoxynucleoitidyl transferase-mediated nick end labeling(TUNEL) was employed to examine the apoptosis of the liver tissue. Oil red O staining, MitoSOX staining, and Prussian blue staining were conducted to reveal lipid deposition, the content of reactive oxygen species(ROS), and iron deposition in liver tissue. Western blot was employed to determine the expression of Nrf2, heme oxygenase-1(HO-1), glutathione peroxidase 4(GPX4), ferroptosis suppressor protein 1(FSP1), B cell lymphoma-2(Bcl-2), and Bcl-2 associated X protein(Bax) in the liver tissue. The result showed that TSⅡ_A significantly reduced the content of MDA, AST, ALT, TC, and TG in the serum, increased the activity of SOD, decreased the apoptosis rate, lipid deposition, ROS, and iron deposition in the liver tissue, up-regulated the expression of Nrf2, HO-1, FSP1, GPX, and Bcl-2, and inhibited the expression of Bax in the liver tissue of NAFLD rats. However, ML385 partially reversed the protective effect of TSⅡ_A on the liver tissue. In conclusion, TSⅡ_A could inhibit ferroptosis in the hepatocytes and decrease the ROS and lipid accumulation in the liver tissue of NAFLD rats by activating the Nrf2 signaling pathway.


Abietanes , Ferroptosis , Non-alcoholic Fatty Liver Disease , Rats , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , bcl-2-Associated X Protein/metabolism , Reactive Oxygen Species/metabolism , Liver , Signal Transduction , Triglycerides/metabolism , Superoxide Dismutase/metabolism , Iron/metabolism
7.
Zoolog Sci ; 41(2): 210-215, 2024 Apr.
Article En | MEDLINE | ID: mdl-38587916

Protocobitis species are typical cave-dwelling fish, exhibiting distinctive morphological adaptations such as colorless body, lack of eyes, and reduced scales and ribs in response to their extreme cave habitats. Distinct from the recorded species, P. anteroventris, P. polylepis, and P. typhlops, a new species, Protocobitis longicostatus sp. nov., is described from Guangxi Zhuang Autonomous Region, China. Protocobitis longicostatus sp. nov. can easily be distinguished from all known congeners by the following characteristics: whole body covered by scales except head, 12 branched caudal fin rays, and long ribs. These species face threats from habitat degradation, hydrological changes, and environmental pollution. Thus, the conservation of cavefish in China has become an urgent issue.


Cypriniformes , Animals , Cypriniformes/anatomy & histology , China , Caves , Eye , Ecosystem
8.
Sci Total Environ ; 930: 172511, 2024 Jun 20.
Article En | MEDLINE | ID: mdl-38641106

The co-occurrence of nanoplastics (NPs) and antibiotics in the environment is a growing concern for ecological safety. As NPs age in natural environments, their surface properties and morphology may change, potentially affecting their interactions with co-contaminants such as antibiotics. It is crucial to understand the effect of aging on NPs adsorption of antibiotics, but detailed studies on this topic are still scarce. The study utilized the photo-Fenton-like reaction to hasten the aging of polystyrene nanoplastics (PS-NPs). The impact of aging on the adsorption behavior of norfloxacin (NOR) was then systematically examined. The results showed a time-dependent rise in surface oxygen content and functional groups in aged PS-NPs. These modifications led to noticeable physical changes, including increased surface roughness, decreased particle size, and improved specific surface area. The physicochemical changes significantly increased the adsorption capacity of aged PS-NPs for norfloxacin. Aged PS-NPs showed 5.03 times higher adsorption compared to virgin PS-NPs. The adsorption mechanism analysis revealed that in addition to the electrostatic interactions, van der Waals force, hydrogen bonding, π-π* interactions and hydrophobic interactions observed with virgin PS-NPs, aged PS-NPs played a significant role in polar interactions and pore-filling mechanisms. The study highlights the potential for aging to worsen antibiotic risk in contaminated environments. This study not only enhances the comprehension of the environmental behavior of aged NPs but also provides a valuable basis for developing risk management strategies for contaminated areas.


Norfloxacin , Polystyrenes , Norfloxacin/chemistry , Adsorption , Polystyrenes/chemistry , Anti-Bacterial Agents/chemistry , Nanoparticles/chemistry , Water Pollutants, Chemical/chemistry , Photochemical Processes , Models, Chemical
9.
Environ Res ; 251(Pt 2): 118725, 2024 Mar 20.
Article En | MEDLINE | ID: mdl-38518915

To achieve rapid enrichment of the targeted hydrogen-producing bacterial population and reconstruction of the microbial community in the biological hydrogen-producing reactor, the activated sludge underwent multiple pretreatments using micro-aeration, alkaline treatment, and heat treatment. The activated sludge obtained from the multiple pretreatments was inoculated into the continuous stirred tank reactor (CSTR) for continuous operations. The community structure alteration and hydrogen-producing capability of the activated sludge were analyzed throughout the operation of the reactor. We found that the primary phyla in the activated sludge population shifted to Proteobacteria, Firmicutes, and Bacteroidetes, which collectively accounted for 96.69% after undergoing several pretreatments. This suggests that the multiple pretreatments facilitated in achieving the selective enrichment of the fermentation hydrogen-producing microorganisms in the activated sludge. The CSTR start-up and continuous operation of the biological hydrogen production reactor resulted in the reactor entering a highly efficient hydrogen production stage at influent COD concentrations of 4000 mg/L and 5000 mg/L, with the highest hydrogen production rate reaching 8.19 L/d and 9.33 L/d, respectively. The main genus present during the efficient hydrogen production stage in the reactor was Ethanoligenens, accounting for up to 33% of the total population. Ethanoligenens exhibited autoaggregation capabilities and a superior capacity for hydrogen production, leading to its prevalence in the reactor and contribution to efficient hydrogen production. During high-efficiency hydrogen production, flora associated with hydrogen production exhibited up to 46.95% total relative abundance. In addition, redundancy analysis (RDA) indicated that effluent pH and COD influenced the distribution of the primary hydrogen-producing bacteria, including Ethanoligenens, Raoultella, and Pectinatus, as well as other low abundant hydrogen-producing bacteria in the activated sludge. The data indicates that the multiple pretreatments and reactor's operation has successfully enriched the hydrogen-producing genera and changed the community structure of microbial hydrogen production.

10.
J Geriatr Cardiol ; 21(2): 219-231, 2024 Feb 28.
Article En | MEDLINE | ID: mdl-38544498

BACKGROUND: Myocardial infarction (MI) is a critical cardiovascular event with multifaceted etiology, involving several genetic and environmental factors. It is essential to understand the function of plasma metabolites in the development of MI and unravel its complex pathogenesis. METHODS: This study employed a bidirectional Mendelian randomization (MR) approach to investigate the causal relationships between plasma metabolites and MI risk. We used genetic instruments as proxies for plasma metabolites and MI and conducted MR analyses in both directions to assess the impact of metabolites on MI risk and vice versa. In addition, the large-scale genome-wide association studies datasets was used to identify genetic variants associated with plasma metabolite (1400 metabolites) and MI (20,917 individuals with MI and 440,906 individuals without MI) susceptibility. Inverse variance weighted was the primary method for estimating causal effects. MR estimates are expressed as beta coefficients or odds ratio (OR) with 95% CI. RESULTS: We identified 14 plasma metabolites associated with the occurrence of MI (P < 0.05), among which 8 plasma metabolites [propionylglycine levels (OR = 0.922, 95% CI: 0.881-0.965, P < 0.001), gamma-glutamylglycine levels (OR = 0.903, 95% CI: 0.861-0.948, P < 0.001), hexadecanedioate (C16-DC) levels (OR = 0.941, 95% CI: 0.911-0.973, P < 0.001), pentose acid levels (OR = 0.923, 95% CI: 0.877-0.972, P = 0.002), X-24546 levels (OR = 0.936, 95% CI: 0.902-0.971, P < 0.001), glycine levels (OR = 0.936, 95% CI: 0.909-0.964, P < 0.001), glycine to serine ratio (OR = 0.930, 95% CI: 0.888-0.974, P = 0.002), and mannose to trans-4-hydroxyproline ratio (OR = 0.912, 95% CI: 0.869-0.958, P < 0.001)] were correlated with a decreased risk of MI, whereas the remaining 6 plasma metabolites [1-palmitoyl-2-arachidonoyl-GPE (16:0/20:4) levels (OR = 1.051, 95% CI: 1.018-1.084, P = 0.002), behenoyl dihydrosphingomyelin (d18:0/22:0) levels (OR = 1.076, 95% CI: 1.027-1.128, P = 0.002), 1-stearoyl-2-docosahexaenoyl-GPE (18:0/22:6) levels (OR = 1.067, 95% CI: 1.027-1.109, P = 0.001), alpha-ketobutyrate levels (OR = 1.108, 95% CI: 1.041-1.180, P = 0.001), 5-acetylamino-6-formylamino-3-methyluracil levels (OR = 1.047, 95% CI: 1.019-1.076, P < 0.001), and N-acetylputrescine to (N (1) + N (8))-acetylspermidine ratio (OR = 1.045, 95% CI: 1.018-1.073, P < 0.001)] were associated with an increased risk of MI. Furthermore, we also observed that the mentioned relationships were unaffected by horizontal pleiotropy (P > 0.05). On the contrary, MI did not lead to significant alterations in the levels of the aforementioned 14 plasma metabolites (P > 0.05 for each comparison). CONCLUSIONS: Our bidirectional MR study identified 14 plasma metabolites associated with the occurrence of MI, among which 13 plasma metabolites have not been reported previously. These findings provide valuable insights for the early diagnosis of MI and potential therapeutic targets.

11.
Int J Biol Macromol ; 266(Pt 1): 131208, 2024 May.
Article En | MEDLINE | ID: mdl-38552695

In this study, three activators and two activation methods were employed to activate sesame lignin-based biochar. The biochar samples were comprehensively characterized, their abilities to adsorb benzo[a]pyrene (BaP) from sesame oil were assessed, and the mechanism was analyzed. The results showed that the biochar obtained by one-step activation was more effective in removing BaP from sesame oil than the biochar produced by two-step activation. Among them, the biochar generated by one-step activation with ZnCl2 as the activator had the largest specific surface area (1068.8776 m3/g), and the richest mesoporous structure (0.7891 m3/g); it removed 90.53 % of BaP from sesame oil. BaP was mainly adsorbed by the mesopores of biochar. Mechanistically, pore-filling, π-π conjugations, hydrogen bonding, and n-π interactions were involved. The adsorption was spontaneous and heat-absorbing. In conclusion, the preparation of sesame lignin biochar using one-step activation with ZnCl2 as the activator was found to be the best for removing BaP from sesame oil. This biochar may be an economical adsorbent for the industrial removal of BaP from sesame oil.


Benzo(a)pyrene , Charcoal , Lignin , Sesame Oil , Sesamum , Charcoal/chemistry , Lignin/chemistry , Benzo(a)pyrene/chemistry , Adsorption , Sesame Oil/chemistry , Sesamum/chemistry , Zinc Compounds/chemistry , Chlorides/chemistry
12.
Viruses ; 16(2)2024 Feb 01.
Article En | MEDLINE | ID: mdl-38400007

In the realm of clinical practice, nucleoside analogs are the prevailing antiviral drugs employed to combat feline herpesvirus-1 (FHV-1) infections. However, these drugs, initially formulated for herpes simplex virus (HSV) infections, operate through a singular mechanism and are susceptible to the emergence of drug resistance. These challenges underscore the imperative to innovate and develop alternative antiviral medications featuring unique mechanisms of action, such as viral entry inhibitors. This research endeavors to address this pressing need. Utilizing Bio-layer interferometry (BLI), we meticulously screened drugs to identify natural compounds exhibiting high binding affinity for the herpesvirus functional protein envelope glycoprotein B (gB). The selected drugs underwent a rigorous assessment to gauge their antiviral activity against feline herpesvirus-1 (FHV-1) and to elucidate their mode of action. Our findings unequivocally demonstrated that Saikosaponin B2, Punicalin, and Punicalagin displayed robust antiviral efficacy against FHV-1 at concentrations devoid of cytotoxicity. Specifically, these compounds, Saikosaponin B2, Punicalin, and Punicalagin, are effective in exerting their antiviral effects in the early stages of viral infection without compromising the integrity of the viral particle. Considering the potency and efficacy exhibited by Saikosaponin B2, Punicalin, and Punicalagin in impeding the early entry of FHV-1, it is foreseeable that their chemical structures will be further explored and developed as promising antiviral agents against FHV-1 infection.


Herpesviridae Infections , Hydrolyzable Tannins , Oleanolic Acid/analogs & derivatives , Saponins , Varicellovirus , Animals , Cats , Humans , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Herpesviridae Infections/veterinary
13.
Heliyon ; 10(1): e24306, 2024 Jan 15.
Article En | MEDLINE | ID: mdl-38268603

Biochemical analyzers are vital instruments that utilize the principle of photoelectric colorimetry to quantify a specific chemical composition in body fluids. This analysis provides critical data for the diagnosis, treatment, prognosis, and overall health status of various diseases in clinical practice. However, the performance of a biochemical analyzer can vary significantly between different brands or over time within the same brand. Therefore, it is imperative to regularly assess the performance of the analyzer to ensure consistent results for longitudinal studies and to maintain day-to-day data consistency. Additionally, when multiple analyzers are utilized, it is necessary to evaluate the performance of each instrument to ensure accurate results across multiple platforms. In this study, we developed and verified an experimental evaluation scheme for the analytical performance of the instrument, chemometrics for biochemical analyzers, utilizing national reference materials and patient sera as the experimental subjects. We evaluated the performance of the optical system, temperature control system, sample-adding system, and detection system to confirm the feasibility of this scheme. We also compared the analytical performance of different brands of biochemical analyzers for routine biochemical tests, such as liver function, kidney function, ion, blood lipids, blood glucose, and myocardial enzyme spectrum. Using the AU 5400 as a control and the ADVIA 2400 as the comparison system, the relative variation in inter-instrument comparison data was found to be acceptable at the clinical medicine decision level. In conclusion, the performance of a biochemical analyzer can vary significantly between different brands or over time within the same brand. Regular evaluations are necessary to ensure accurate and consistent results across different analyzers. This study provides a feasible scheme for evaluating the analytical performance of biochemical analyzers that can be used to ensure the accuracy and consistency of the results of different brands of automatic chemical analyzers in the laboratory.

14.
Spectrochim Acta A Mol Biomol Spectrosc ; 308: 123793, 2024 Mar 05.
Article En | MEDLINE | ID: mdl-38141506

Surface-enhanced Raman scattering (SERS) is an ultrasensitive analytical method which has been applied in many fields, and the reproducibility of the substrate is important for reliable SERS analysis. In present work, an innovative method inspired by the flower planting process is put forward to acquire gold nanoflower (AuNF) SERS substrate. Three steps (digging holes, sowing the gold nanoseeds and seeds grow into gold nanoflowers) are included in the substrate fabrication process, and the influence of preparing conditions (like reacting time and Na3Au(SO3)2 concentration) on the substrate morphology and SERS performance are investigated. The acquired AuNF substrate not only exhibits good SERS performance but also possesses excellent reproducibility while being used to detect the rhodamine 6G (R6G) molecular. The relative standard deviation (RSD) of Raman signals among substrates acquired in distinct batches (substrate-to-substrate) is as low as 6.67 %. Since the AuNF substrate is prepared by the wet chemistry route based on seed-mediated growth and there are no expensive reagents or complicated process used, the new process to obtain AuNF substrate is cost-effective and easy to scale up.

15.
Heliyon ; 9(11): e22464, 2023 Nov.
Article En | MEDLINE | ID: mdl-38074859

Purpose: Non-alcoholic fatty liver disease (NAFLD) represents an increasingly prevalent set of liver diseases. Tryptophan 2,3-dioxygenase 2 (TDO2) is the major enzyme of tryptophan catabolism and is abnormally expressed in liver cancer, but the function of TDO2 in NAFLD remains unclear. The current study was designed to probe into the effect and mechanism of TDO2 on NAFLD. Methods: C57BL/6 mice and TDO2-knockout (KO) mice were fed with a high-fat diet for 16 weeks to construct the NAFLD model in vivo; primary hepatocytes isolated from TDO2-KO mice were exposed to palmitate (PA) to establish the NAFLD model in vitro. The expression of TDO2 was determined using Western blot. The function and mechanism of TDO2 were evaluated by enzyme-linked immunosorbent assay, hematoxylin-eosin staining, Oil Red O staining, immunohistochemical assay, and Western blot. Results: The expression of TDO2 in the liver tissue of NAFLD mice was more than three times that in the control group. Functionally, TDO2 knockout reduced hepatic lipid deposition and liver fibrosis in NAFLD mice in vivo and primary hepatocytes induced by 200 µM PA in vitro. Mechanistically, the loss of TDO2 restrained hepatic lipid deposition and expression levels of fibrosis-related markers in PA-treated primary hepatocytes, and these trends were partially reversed by 10 ng/ml receptor activator of the nuclear factor kappa-B ligand (RANKL, an activator of the NF-κB pathway). Conclusion: Knocking out TDO2 repressed hepatic lipid deposition and liver fibrosis in mice with NAFLD, and reduced hepatic lipid deposition and expressions of fibrosis-related markers in PA-treated primary hepatocytes by inactivating the NF-κB pathway.

16.
Front Physiol ; 14: 1275736, 2023.
Article En | MEDLINE | ID: mdl-38028806

Recent successful cardiac transplantation from pig to non-human primates and the first pig-to-human transplantation has put the focus on the properties of the pig heart. In contrast to the coronary arteries, the coronary veins are less well characterized and the aim was to examine the mechanical and pharmacological properties of coronary veins in comparison to the arteries. Vessel segments from the left anterior descending coronary artery (LAD) and the concomitant vein were isolated from pig hearts in cardioplegia and examined in vitro. The wall thickness, active tension and active stress at optimal circumference were lower in coronary veins, reflecting the lower intravascular pressure in vivo. Reverse transcription polymerase chain reaction (RT-PCR) analysis of myosin isoforms showed that the vein could be characterized as having a slower smooth muscle phenotype compared to the artery. Both vessel types contracted in response to the thromboxane agonist U46619 with EC50 values of about 20 nM. The artery contracted in response to acetylcholine. Precontracted arteries relaxed in noradrenaline and substance P. In contrast, the veins relaxed in acetylcholine, contracted in noradrenaline and were unresponsive to substance P. In conclusion, these results demonstrate significant differences between the coronary artery and vein in the smooth muscle properties and in the responses to sympathetic and parasympathetic stimuli.

17.
Trop Med Infect Dis ; 8(11)2023 Oct 29.
Article En | MEDLINE | ID: mdl-37999607

In Vietnam, chest radiography (CXR) is used to refer people for GeneXpert (Xpert) testing to diagnose tuberculosis (TB), demonstrating high yield for TB but a wide range of CXR abnormality rates. In a multi-center implementation study, computer-aided detection (CAD) was integrated into facility-based TB case finding to standardize CXR interpretation. CAD integration was guided by a programmatic framework developed for routine implementation. From April through December 2022, 24,945 CXRs from TB-vulnerable populations presenting to district health facilities were evaluated. Physicians interpreted all CXRs in parallel with CAD (qXR 3.0) software, for which the selected TB threshold score was ≥0.60. At three months, there was 47.3% concordance between physician and CAD TB-presumptive CXR results, 7.8% of individuals who received CXRs were referred for Xpert testing, and 858 people diagnosed with Xpert-confirmed TB per 100,000 CXRs. This increased at nine months to 76.1% concordant physician and CAD TB-presumptive CXRs, 9.6% referred for Xpert testing, and 2112 people with Xpert-confirmed TB per 100,000 CXRs. Our programmatic CAD-CXR framework effectively supported physicians in district facilities to improve the quality of referral for diagnostic testing and increase TB detection yield. Concordance between physician and CAD CXR results improved with training and was important to optimize Xpert testing.

18.
Zhongguo Zhong Yao Za Zhi ; 48(15): 4208-4214, 2023 Aug.
Article Zh | MEDLINE | ID: mdl-37802789

In this study, the transmittance of tanshinone Ⅱ_A(Tan Ⅱ_A) and cryptotanshinone(CTS) through the blood-prostate barrier and their distributions in the prostate tissue were compared between tanshinone extract(Tan E) treatment group and the corresponding monomer composition group under the equivalent dose conversion in vitro and in vivo. First, the human prostate epithelial cell line RWPE-1 was cultured in vitro for 21 days for the establishment of a blood-prostate barrier model, and the transmission of Tan Ⅱ_A and CTS through the barrier model was investigated after administration of Tan E and corresponding single active components. Second, SD rats were administrated with 700 mg·kg~(-1) Tan E, 29 mg·kg~(-1) CTS, and 50 mg·kg~(-1) Tan Ⅱ_A by gavage, and plasma and prostate tissue samples were collected at the time points of 2, 4, 8, 12, and 24 h. The Tan Ⅱ_A and CTS concentrations in the samples were determined. The results showed that in the cell model, the cumulative transmission amounts of CTS and Tan Ⅱ_A in the extract at each time point were higher than those of the corresponding single active components(P<0.01). In rats, after the administration of Tan E, the concentrations of Tan Ⅱ_A and CTS in rat plasma and prostate were higher than those of the corresponding single active components. This study demonstrated that the coexisting components in Tan E promoted the penetration of its main pharmacological components Tan Ⅱ_A and CTS through the blood-prostate barrier. The findings provide a theoretical and experimental basis for the application of Tan E in the clinical treatment of prostate-related diseases.


Abietanes , Prostate , Male , Rats , Humans , Animals , Rats, Sprague-Dawley , Abietanes/pharmacology , Permeability
19.
Trials ; 24(1): 675, 2023 Oct 18.
Article En | MEDLINE | ID: mdl-37853420

BACKGROUND: Chronic prostatitis/chronic pelvic pain syndrome is a highly prevalent syndrome. Previous studies showed that extracorporeal shockwave therapy and myofascial release therapy could improve the quality of life in patients with chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS). Theoretically, combined therapy with extracorporeal shockwave therapy and myofascial release therapy will likely have significant advantages in treating CP/CPPS. We, therefore, present a protocol for conducting a well-designed randomized controlled trial to compare the efficacy and safety of each therapy. METHODS: The proposed study will be a three-group randomized control trial (RCT) design that includes 150 participants from Zhongda Hospital Affiliated to Southeast University, with equal allocation of participants to the three intervention groups. The study duration will be 8 weeks, which includes a 4-week treatment period and a 4-week follow-up period. The primary outcome will be the changes in surface electromyography (sEMG) assessment and National Institutes of Health-Chronic Prostatitis Symptom Index (NIH-CPSI). The secondary outcomes will include the changes in three-dimensional quantification, shear wave elastography (SWE), and sympathetic skin response (SSR) testing. Assessments will be conducted before the intervention (T0), before the 5th intervention (T1), immediately after the 8th intervention (T2), and the 4th week after the end of the 8th intervention (T3). DISCUSSION: This trial will compare the differences in efficacy between single extracorporeal shockwave therapy, single myofascial release therapy, and combined therapy to select the most appropriate treatment option for patients with CP/CPPS. The possible pathogenesis of CP/CPPS would also be analyzed by comparing the intercorrelation between each objective and subjective measurement (NIH-CPSI score, sEMG, SWE, SSR). TRIAL REGISTRATION: The name of the registry: Extracorporeal Shockwave and Myofascial Release Therapy in Chronic Pelvic Pain Syndrome. REGISTRATION NUMBER: NCT05659199. Date of registration: December 2022.


Chronic Pain , Extracorporeal Shockwave Therapy , Prostatitis , Male , Humans , Chronic Pain/diagnosis , Chronic Pain/therapy , Chronic Pain/etiology , Myofascial Release Therapy , Extracorporeal Shockwave Therapy/adverse effects , Extracorporeal Shockwave Therapy/methods , Prostatitis/therapy , Chronic Disease , Pelvic Pain/diagnosis , Pelvic Pain/therapy , Pelvic Pain/etiology , Treatment Outcome , Randomized Controlled Trials as Topic
20.
Appl Radiat Isot ; 202: 111059, 2023 Dec.
Article En | MEDLINE | ID: mdl-37812858

With an increase of stopping operation of nuclear reactors worldwide, the supply of medical 99Mo becomes difficult and thus many efforts have been made to find an alternative. A process based on an electron linear accelerator (linac) system and a100Mo target via the 100Mo (γ,n)99Mo reaction receives a lot of attention due to the relatively low level of co-produced impurities. This process has been recently developed at the Institute of Modern Physics (IMP) and the Monte Carlo simulation was used to optimize the target system before operating pilot irradiation experiments. First, tungsten and tantalum, as mostly used converter materials, were tested. The yield of 99Mo was evaluated with respect to the converter thickness and the electron beam energy by means of Geant4 simulations. Besides, the specific activity of 99Mo produced from one-stage approach (100Mo target without a converter) and two-stage approach (100Mo target with a converter) was compared when varying the testing conditions. The two-stage approach was selected for the experiment due to the higher specific activity of produced 99Mo at all tested conditions. A target consisting of a 10 mm thickness of the 100Mo tablets and a 2.4 mm thick Ta converter was irradiated for 40 h (50 MeV with 0.2 µA). The Geant4-calculated specific activity of generated 99Mo at the end of bombardment agreed well with the experimental value, which proved high level of accuracy of the Geant4 simulation. In future studies, the Geant4 simulation will be used to optimize the production process when using high power linac system.

...